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Abstract

An adaptive multi-level methodology is developed in this paper to create a hierarchy of computational sub-domains
with varying resolution for multiple scale problems. It is intended to concurrently predict evolution of variables at the
structural and microstructural scales, as well as to track the incidence and propagation of microstructural damage in
composite and porous materials. The microstructural analysis is conducted with the Voronoi cell finite element model
(VCFEM), while a conventional displacement based FEM code executes the macroscopic analysis. The model intro-
duces three levels in the computational domain which include macro, macro-micro and microscopic analysis. It dif-
ferentiates between non-critical and critical regions and ranges from macroscopic computations using continuum
constitutive relations to zooming in at ‘hotspots’ for pure microscopic simulations. Coupling between the scales in
regions of periodic microstructure is accomplished through asymptotic homogenization. An adaptive process signifi-
cantly increases the efficiency while retaining appropriate level of accuracy for each region. Numerical examples are
conducted for composite and porous materials with a variety of microscopic architectures to demonstrate the potential
of the model. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Multi-level model; Voronoi cell FEM; Particle cracking; Adaptivity; Elastic—plastic

1. Introduction

Heterogeneous structures with second phase inclusions or voids in the microstructure are conventionally
analyzed with macroscopic properties obtained from homogenization of response at smaller (meso, micro)
length scales. The mathematical homogenization theory, which uses asymptotic expansions of displace-
ment, strain and stress fields about macroscopic values, has been used as a tool for analyzing multiple scale
responses in Benssousan et al. (1978), Sanchez-Palencia (1980), Parton and Kudryavtsev (1993) and
Bakhvalov and Panasenko (1984). The method is based on the assumptions of spatial periodicity of mi-
croscopic representative volume elements (RVE) and local uniformity of macroscopic fields within each
RVE. It decomposes the multiscale boundary value problem into a decoupled set of microscale RVE
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problem and a macroscale problem. Concurrent finite element analyses are executed at each scale for in-
formation transfer between the scales. Multiple scale analysis of linear elastic reinforced composites by this
method have been conducted by Fish and Belsky (1995), Fish and Wagiman (1993), Guedes and Kikuchi
(1991) and Hollister and Kikuchi (1992). For non-linear materials, the homogenization methods have been
extended by Suquet (1985), Fish et al. (1997), Guedes (1990) and Cheng (1992). The method has also been
implemented to simulate damage by fiber-matrix debonding in linear elastostatics by Lene (1986) and fiber
rupture using a phenomenological damage model by Devries et al. (1989).

Despite its advantages, asymptotic homogenization has suffered shortcomings arising from efficiency
and accuracy considerations. Enormous computational efforts can result with this method due to the fact
that at each integration point in the macroscopic model, boundary value problems of the microstructural
RVE should be solved twice. To economize computations, many studies have assumed simple unit cell
models of the microscopic RVE. Such idealizations may however be unrealistic for deformation and failure
analysis of many materials. The homogenization method has another major limitation stemming from its
basic assumptions, viz. (a) uniformity of the macroscopic fields within each RVE and (b) spatial periodicity
of the RVE. The uniformity assumption is not appropriate in critical regions of high gradients, where the
macroscopic fields can vary considerably. Free edges, interfaces, macrocracks, neighborhood of material
discontinuities and most importantly in the regions of evolving microscopic damage and instability are the
potential sites of non-uniformity. Furthermore, statistical periodicity implies that the RVE may be repeated
to represent the entire neighborhood of a macroscopic point. For non-uniform microstructures, sufficiently
large portions should be considered as RVE for homogenization analysis. Unit cell models are severely
limited in this respect. Even higher-order theories of homogenization may be computationally unviable. A
few effective global-local techniques based on hierarchical decomposition and superposition of field vari-
ables have been proposed by Belytschko et al. (1994), Robbins and Reddy (1996) and Hughes (1995).
Pagano and Rybicki (1974) had discussed the breakdown of effective modulus theory for composite lam-
inates with free edges and the need for global-local techniques. Fish and Belsky (1995) and Fish et al. (1994)
have used global-local techniques with multigrid methods to extend the multiple scale modeling to non-
periodic materials. Zohdi et al. (1996), Oden and Zohdi (1997) and Oden et al. (1999) have developed a
homogenized Dirichlet projection method (HDPM), which resolves the microstructural effects at different
scales on the macroscopic response of heterogeneous structures.

Adaptivity in the computational modules for multiple scale problems entails minimizing two types of
errors, viz. the discretization error and the modeling error due to homogenized material properties as
discussed in Oden and Zohdi (1997) and Oden et al. (1999). In the present work, an adaptive multi-level
method is proposed to address the latter type of modeling error. It is aimed at improving the accuracy of
analyses of elastic—plastic composite and porous structures with microstructural damage. The model uses
computational hierarchy to concurrently predict the evolution of variables at structural and microstructural
scales, as well as to track the incidence and propagation of microstructural damage. Analysis of micro-
structural response with arbitrary distributions, shapes and sizes of heterogeneities is conveniently done by
the Voronoi Cell finite element model (VCFEM) (Moorthy and Ghosh, 1996, 1998; Ghosh et al., 1997). A
high level of computational efficiency with sufficient accuracy and resolution has been achieved for elastic
and elastic—plastic materials by this method. Progressive damage by particle cracking has been done in
Ghosh and Moorthy (1998). Recently, an adaptive VCFEM has been successfully proposed by Moorthy
and Ghosh (2000), where element adaptation is executed in two consecutive stages based on a-posteriori
evaluation of error measures. In the first stage, displacement function adaptations are carried out by a A-
refinement and p-enrichment strategy, which is followed by an enrichment of stress functions to reduce the
error in kinematic relations.

For periodic RVE of elastic and elastic—plastic materials, the microstructural VCFEM has been coupled
with structural analysis codes by using asymptotic homogenization in Ghosh et al. (1995, 1996). This
method fails for problems, where assumptions of macroscopic uniformity and statistical periodicity are
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questionable. Consequently, it becomes necessary to implement a combination of homogenization and
global local methods, which is a non-trivial undertaking due to the lack of apriori knowledge of regions that
require differential resolution. The multi-level methodology developed in this paper addresses this issue by
differentiating between non-critical and critical regions and ranging from macroscopic computations using
continuum constitutive relations to zooming in at ‘hotspots’ for pure microscopic simulations. The zoom-in
is accomplished by a mesh-enrichment technique or 4-adaptation, where macroscopic elements are suc-
cessively dissected in regions of steep solution gradients. Also, the adaptations are based on local estimates
of ‘error’ or solution gradients. The limitations of the s-adaptation and possible remedies are discussed in
Section 12. The paper introduces three levels of the computational domain, for (a) fully macroscopic
analysis with homogenized material parameters, (b) macro—microscopic analysis for periodic RVE’s and (¢)
fully microscopic analysis. Additionally a new way of developing a piecewise continuous elastic—plastic
constitutive model is presented in this paper. This model accounts for the details of microstructural
morphology and variables. A number of numerical examples are solved with various microscopic archi-
tectures to support the development of this multi-level model.

2. Two way coupling for multiple scale modeling

Multiple scale modeling of heterogeneous materials is necessary to concurrently account for spatial
variability at the macro and microscales. An effective model of this class requires two-way coupling for
efficient computing, as well as for accurate representation of the necessary variables at different scales. The
first is a ‘bottom up’ coupling for the determination of equivalent homogeneous behavior at a macroscopic
point x, as a function of the microstructural geometry and behavior of the constitutive phases, but inde-
pendent of applied loads to the structure. In the homogenization procedure, an isolated RVE Y (x) C R is
identified at microstructural scale of heterogeneities (Fig. 1(b)). The scale y of the RVE domain Y (x) is large
with respect to the characteristic length / of microscopic heterogeneities, but is significantly small compared

Qstructure Q [

(a)

L
@
T tm
T
Y,
—»
Fum
| l |
| |

(b) ()

Fig. 1. A heterogeneous structure showing various scales (a) The structure at the macroscopic scale of applied loads (b) A repre-
sentative volume element (RVE) at the microscopic scale with the VCFE model and (c) A Voronoi cell element at the scale of a single
heterogeneity or basic structural element.
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to the macroscopic length scale L of the structure and applied loads. Homogenized variables at the mac-
roscopic scale are obtained by volume averaging of variables in the RVE, following the definition:

<f>y<x):%| / F0)dy where [¥] = / ar. (1)

The condition for macroscopic homogeneity, according to the Hill-Mandel hypothesis (Hill, 1965),
assumes equivalence of strain energy for the actual and equivalent homogenized media. Thus, for a stat-
ically admissible stress field ¢(y) and kinematically admissible strain field e(y),

(6:€),={(0),:(e), VyelY. (2)

The microscopic stress 6(y) and strain e(y) fields satisfying the homogeneity condition (2) may be obtained
by solving boundary value problems for the RVE Y with prescribed homogeneous stress/strain or peri-
odicity boundary conditions, stated as

uniform traction Tb = <°'>y ‘n(y) =0-n(y) ondY,
uniform strain = (€), - on 07,

Y-periodicity uw=(e), -y + u( )= (€), -y +a(y +KkY) ondY, (3)

where k is a 3 x 3 array of integers and Y is the period of Y-periodic displacement functions , interpreted
as local perturbations to macroscopic strain based displacement fields. The macroscopic constitutive
equations are obtained by solving a boundary value problem of the RVE Y with any one of the three sets of
boundary conditions in Egs. (3a)-(3c), followed by the averaging process in Eq. (1). For linear elastic
constituent phases in Y, the relation between the strain energy functions has been established in Suquet
(1987) as

(€) 1 Ej: () <(e) : Ep, : () <(e) : Ef : () VECW, (4)
where E?r,E:;er,Els‘tr are, respectively, the homogenized stiffness tensors evaluated with uniform traction,
periodicity and uniform strain boundary conditions, and (e) is the macroscopic (applied or averaged) strain
field. The difference in stiffnesses with the kinematic and kinetic boundary conditions, reduce with de-
creasing sizes of Y. It is generally concluded by Hollister and Kikuchi (1992) that for the same RVE size, the
periodicity boundary conditions are expected to yield more accurate statistically homogenized constitutive
parameters and macroscopic properties.

The other coupling is the ‘top down’, where the evolution of variables are evaluated in the micro-
structure from known macroscopic variables, by a process termed as localization. In those regions, where
the microstructure may admit a RVE Y, the microscopic variables can be evaluated by solving a boundary
value problem with imposed macroscopic strains and the local periodicity condition in Eq. (3c). In other
regions, where assumptions of local periodicity of the RVE may be unrealistic, the localization process will
entail direct interfacing of the microstructural and macroscopic regions.

3. A multi-level model for coupling different scales

In the spirit of true two-way coupling of multiple scale problems, the computational domain in this
paper is adaptively decomposed into three levels of hierarchy based on the requirements of the resolution.
Such hierarchy is intended to increase computational efficiency as well as accuracy in concurrent prediction
of variables at the continuum and microstructural scales. As proposed in Lee et al. (1999), the model uses
homogenization of microstructural RVE solutions to evaluate homogenized properties and cascades down
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the scales at hotspots of evolving damage. The three levels of hierarchy with requirements of increasing
resolution (Fig. 2) are as follows:

(i) Computational subdomain level-0: These correspond to non-critical macroscopic regions in Fig. 2(a),
where deformation variables are relatively uniform and periodicity conditions may be assumed for the
underlying material RVE. Scale effects are negligible in this region and local constitutive relations may be
derived from postulates of the RVE approaching zero volume. Continuum level anisotropic plasticity
constitutive relations, that are consistent with the actual microstructural constitution, are developed for
macroscopic modeling of these regions.

The level-0 macroscopic simulations are accompanied by element refinement or 4-adaptation for two
reasons. The first is to identify and reduce a chosen ‘error measure’ in the macroscopic computational
model. A second attribute is that it enables the computational model to ‘zoom in’ on regions of evolving
non-uniformity due to microscopic non-homogeneity. This reduces the disparity in size of the macro and
micro scale elements by successive refinement of macroscopic elements in the critical regions as shown in
Fig. 2a.

(i) Computational subdomain level-1: These are regions that face imminent microscopic non-homo-
geneity and resulting macroscopic non-uniformities (Fig. 2(a) and (b)). Although, the computations are still
macroscopic, concurrent monitoring of the development of damage and instabilities in the RVE is possible
in this level. For concurrent macro and micro scale analyses the asymptotic homogenization methods,
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Fig. 2. A hierarchical multi-level computational domain; level-0 for macroscale continuum modeling (a) level-1 for coupled macro-
microscopic (RVE) modeling with asymptotic homogenization and (b) level-2 for pure microscopic modeling.
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which is based on the existence of an RVE, is used. Macroscopic element refinement by A-adaptation
continues for this level.

(iii) Computational subdomain level-2: These critical regions materialize with the evolution of micro-
structural damage in the form of evolved microcracks or instabilities (Fig. 2(b)), leading to high macro-
scopic field gradients. The assumptions of macroscopic uniformity and local periodicity are unrealistic. To
realize scale effects, it is required that the level-1 macro-micro computational model switch to a completely
microscopic model, encompassing large portions of the microstructure. A detailed flow chart of the
adaptive hierarchical process is depicted in Fig. 3.

[ Initial Global and Local Information J

" Diswibution of NSTEP=NSTEP+1

Computational Levels

NSTEP=1

N
Level 0 NSTEP > 1
Macroscale Computationg

with Homogenized

\__ Constitutive Model

Criteria 0-1
LevelO->Levell

NO YES

|h-Adaptati0n Module

N> Z

( Level 1 B

Two scale Analysis with

Asymptotic Homogenization
. Y,

Criteria 1-2
Levell->Level2

YES
y

YES cmex’i_m NO

h-Adaptatio

Moo

Level 2

NO Microstructural Analysis

with VCFEM

re

>

Assembly and Solver

NSTEP=NFINAL

NO

Fig. 3. Flow chart of the sequence of operations in the multiple-scale model.
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The substructured computational domain is delineated as an elastic—plastic body of material domain
Quat that consists of regions Quar(p) for which the RVE is repeated periodically, and also of regions
Qmatmp) Where the periodicity assumptions do not hold, i.e.

Qmat (X, 1) = Quat(p) (X, ) U Quiat(np) (X, ). (5)
The macroscopic regions of periodicity are further constituted of repeating a large number of RVEs 7Y, i.e.
Quat = U BP0 where YT = Uk v (6)

Here N(p) corresponds to the number of different RVE’s ¥/ in the periodic regions, and for all practical
purposes, oo corresponds to a sufficiently large number. The non-periodic region Qmartmp) is defined as the
set of all microstructural regions for which the N(np) RVE’s are not repeated, i.e.

Qi) = UL VM vny =0 V£ L (7)
The level-0 and level-1 of the computational domain 2 correspond to the periodic regions, while the level-2
belongs to the non-periodic regions as

0 U Qi C Qmatp), Qp C MmAT(p)- (8)

4. Homogenization with Voronoi cell finite element method
4.1. Asymptotic homogenization with microstructural periodicity

Consider a heterogeneous structure occupying a region Qe (Fig. 1a), for which the heterogeneous
microstructure constitutes of spatially repeated RVEs Y(x) about a macroscopic point x as shown in Fig.
1b. The RVE is discretized into a mesh of Voronoi cells, which naturally evolve from the microstructure by
Dirichlet tessellation. In the Voronoi cell finite element method (VCFEM), each Voronoi cell represents a
basic structural element (BSE), which is the neighborhood of a heterogeneity in the microstructure. The
dimensions of the Y(x) are typically very small in comparison with the structural dimensions L, i.e. //L is a
very small positive number e. Due to variation of evolutionary variables in a small neighborhood e of the
macroscopic point x, all variables are assumed to exhibit dependence on both length scales i.e.
&° = P(x,x/e), where y = x/e. The superscript € denotes association of the function with the two length
scales and hence Q° corresponds to a connected structural and microstructural domain. The assumption of
periodic repetition of the microstructure about x makes the dependence of the function on y(= x/¢), Y-
periodic (Bakhvalov and Panasenko, 1984; Guedes and Kikuchi, 1991; Hollister and Kikuchi, 1992;
Devries et al., 1989). For small deformation elasto-plasticity, the rate forms of the equilibrium, kinematic
and constitutive relations are given as

Jibri e . . o [ 0w O
Equilibrium G = — S Kinematics ¢, = o + ox: ,
Constitutive 6; = Ejey in Q°, (9)

where 67,(x,y), €;(x,y) and i;(x,y) are Y-periodic rates of stress, strain and displacement fields, respec-
tively. Furthermore, the periodic boundary conditions may be specified as

i;(x,y) = i;(x,y + kKY) on RVE boundary 0¥ and gj, is continuous across Y. (10)

The Y-periodic displacement rate field is approximated by an asymptotic expansion about x with respect to
the parameter e:
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i6(x) = i) (x,y) + et (x,y) + i (x,y) + y = X/e. (11)
Noting that the spatial x¢ derivative of any function depends on the two length scales and is given as
0 X o 1090
o(er-3) -1 -
axﬁ( Xy € 6xi+66yi (12)
the stress rate tensor ¢;; can be expressed as
P S D, 2.3
o-l.j:;aijﬂ—aij—l—eoij—i—e O (13)
where
0ir? 0 Qi oul  0u?
=E,, l=E, [ =%+ % 2 =E | X+ % ). 14
ijkl ay 61] ijkl ( axl + ayl )7 Uzj ijkl axl + ayl ( )

From Egs. (9) and (13), and using the periodicity condition on the RVE boundary | ary S dI'y =0, itcan be
proved (Ghosh et al., 1995, 1996) that

o6l d 0id ol
6% =0, i =i’(x) and Y= —|E, { L+L1] =0 15
ij i 1( ) ay/ ay/ [ ijkl { ay[ ayl ( )

By neglecting the terms associated with e or higher in Eq. (13), the constitutive relation in the Y-domain is
expressed as

3 € - € auk 6uk
0, = Ez]k/ekl Ein ( ox, += o ) (16)

Here é;, is the microstructural strain rate tensor, for which e, = %(Gu,?/@x, + 0i?/0x;) is an averaged
macroscopic part and e, = (i, /0y, + 0it; /dy;) is denoted as a fluctuating strain rate tensor (Suquet,
1985). Due to linearity of the rate problem, d}]., i! and the microscopic equilibrium condition can be ex-

pressed as

a_ug il = X’F’(y)a_i‘g _66{?(” =0. (17)

1 Akl
Gy =y ) o) Y

Y 6x, ’
In Eq. (17), 6/ is a Y-antiperiodic function and y' is a Y-periodic function representing characteristic
modes of the deformation in the RVE. Substituting Eq. (17) in the constitutive relations of Eq. (9) yields the

microscopic constitutive relations as

or!
OkpOim + 6);’” (18)

~kl
Uij (y) Upm

where §;; is Kronecker delta. The mean of Eq. (18) yields the homogenized elastic—plastic tangent modulus
for use in the macroscopic analysis, in the form

oy
H _ Akl _ Akl —
Et_]kl 1.1 Y ‘Y| / dY |Y| / ijpm <5kp51rn ayf; )dY (19)

The macroscopic stress and strain relation can thus be stated as
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. . o\ o, .
2y(x) = <Eijk[ (5kn151n + aykl ) g> = El!;-lmnemn (x), (20)
"Iy

where the homogenized variables are X(x) = (6(X,y)), and e(x) = (e°(x,y)),. The incremental small de-
formation analysis for elastic—plastic materials can be conducted with the homogenized modulus at the
macroscopic level and by using the VCFEM for solving the microscopic problem.

4.2. The Voronoi cell finite element method for microstructural analysis

The VCFEM has been successfully developed for composite and porous materials in Moorthy and
Ghosh (1996, 1998, 2000). Arbitrary dispersion patterns, shapes and sizes of heterogeneities are readily
modeled by VCFEM. The computational model naturally evolves by Dirichlet tessellation of the micro-
structure as shown in Fig. 1b. Each Voronoi cell with the embedded inclusion or void is treated as an
element in this formulation. In Moorthy and Ghosh (1998), the VCFEM formulation has been extended to
include damage evolution in the form of particle cracking, where the crack is realized as an elliptical void.
Each Voronoi cell element is amenable to change in topology from two constituent phases (matrix and
inclusions) in undamaged cells, to three phases (matrix, inclusion and crack) in damaged cells. Complete
particle cracking or splitting is assumed to occur at the very onset of damage.

The VCFE formulation constructs a hybrid element by combining the aspects of finite element methods
with important micromechanics considerations. Use of a hybrid stress based formulation results in a high
level of accuracy with a significantly reduced degree of freedom, compared to displacement based FEM
models. Consider a typical representative volume element Y consisting of N undamaged and/or damaged
particles, that are contained in each of the N Voronoi cell elements, as shown in Fig. 1(b). In VCFEM, the
RVE Y comprises the Voronoi cell elements Y,, i.e. Y = UY ,Y,. The assumed stress hybrid formulation in
VCFEM requires independent assumptions of an equilibriated stress field () in each of the matrix and
inclusion phases of each element Y, = Y" U Y?, and compatible displacement fields u on the element
boundary 0Y,, u’ on the matrix-inclusion interface 0Y, and u” on the crack boundary 0Y,,. In an incremental
formulation for elasto-plasticity, the incremental variational formulation introduces an element energy
functional,

1€ (A, Au) = —/

Y.

AB(o, Ac)dY—/ €:AcdY

Y.

+ /a (6 +Ac)-n°- (u+ Au)doY (inter-element traction reciprocity)
)Y,

- /F (t+ At) - (u+ Au)dI' (boundary traction)

- /a ) (6™ + A6™ —6° — Ac®) -n° - (W' + Au')dY (matrix-inclusion interface traction)

— /a (6° + Ac®) -n* - (0" + Au")dY (crack boundary traction), (21)
Yor

where AB is the increment of complimentary energy density. Variables (o,u) correspond to values at the
beginning of an increment, while variables (Ac, Au) are the corresponding increments in a load increment or
step. Outward normals on 0Y,, 0Y, and 0Y,, are denoted by n°, n° and n*" respectively. Superscripts m, ¢ and
cr are associated with the matrix, inclusion and crack phases, respectively, in each Voronoi cell element.
The total energy for the entire RVE of N Voronoi cells is obtained as IT = Y. I1. Setting the first
variation of IT¢ in Eq. (21) with respect to stress increments Ae to zero yields the element compatibility as
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the Euler equation, while setting the first variations of IT¢ with respect to the independent boundary dis-
placements Au, Au’ and Au” to zero, yield the inter-element boundary traction reciprocity, matrix-inclusion
interface traction reciprocity and zero traction crack boundary condition, respectively. Independent as-
sumptions on stress increments Ac are made in the matrix and inclusion phases in each element, thus al-
lowing stress discontinuities across the interface. In this process special forms of Airy’s stress function
®(x,y) to enhance computational efficiency, has been developed in Moorthy and Ghosh (1996, 1998) for
equilibriated stress fields. The functions facilitate stress concentration near the interface and crack
boundary, accounting for the shape of the inclusion and crack and also help satisfy traction reciprocity at
the interfaces 0Y, and 0Y,. Furthermore, they decay at large distances from the interfaces. Compatible
displacement increments are generated on each of the boundaries/interfaces 0Y,, 0Y, and 0Y, by interpo-
lating nodal displacements using polynomial shape functions. The stress and displacement interpolations
may be expressed as

{Ac¢™} = [P"(x,»)|{AB"} (in matrix) and {Ac‘} = [P°(x,»)]{AB°} (in inclusion),
{Au} = [L°|{Aq} (on element boundary),
{Ad'} = [L°]{Aq'} (on interface), and {Au"} = [L“]{Aq"} (on crack face), (22)

where {Aq}, {Aq'} and {Aq"} are the nodal displacement increment vectors, and [L°], [L°] and [L*] are the
corresponding interpolation matrices.

4.3. Coupling asymptotic homogenization with Voronoi cell frame element model

In the incremental formulation, the equilibriated microscopic stress increment corresponds to
Ac'(= Ac*) in Eq. (17) and the microstructural strain increments are designated as Ae‘ in Eq. (16). Simi-
larly, the increments in microscopic displacements on the cell boundaries 0Y, are identified with Au' in Eq.
(17) and those on the interface and crack surface are denoted by Au" and Au'”, respectively. In the absence
of explicit traction boundaries due to periodicity conditions on the boundary, the incremental energy
functional for each Voronoi cell element in Eq. (21) is modified for the asymptotic homogenization process
as

1
Hec = _/Y ES;kle§jAazldY—/ € : AodY

Ye

+ / (6°+Ac) -0 - (u' + Au')doy — / (6™ + A6™ — 6 — Ac) -n° - (u” + Au")dY
or,

Gl c
- / (6° 4+ Ac®) -0 - (u" + Au'") Y + / (e + Ae)Ac‘dY, (23)
e Yo
where §j;, is an instantaneous elastic—plastic compliance tensor. The last term in Eq. (23) incorporates the

effect of macroscopic strains e in the microstructure. The stationary condition of IT¢ with respect to stress
increment Agy; yields as Euler’s equations, the incremental form of kinematic relations

o(u} + Au})
%

J

e+ Aej; = e;; + Aey; + in the element matrix and inclusion phases. (24)

Stationarity of the total energy functional I1¢ = 3>~ | IT€ with respect to displacement increments Au!, Au
and Au!”, result in the inter-element, interface and crack boundary traction reciprocity conditions, re-
spectively.
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(0}, + Ady) - " = —(aj; + Adj;) -n;”  on 0,

(a5 + Ady) - n§ = (o + Aajl) -n§ on X,

(05 +Ac) nF =0 on 0% (25)

The microscopic VCFEM module is executed for two purposes in each increment of the macroscopic
module. The first is to evaluate the microscopic stress increments Ae® from the given values of the mac-
roscopic strain e at the beginning of the step, and its increment Ae. The second is to calculate the in-
stantaneous homogenized tangent modulus £}}, at the end of the increment in the macroscopic module. The
details of the calculation of microscopic stress and homogenized tangent modulus calculation procedure are
given in Ghosh et al. (1995, 1996). The VCFEM is incorporated in a macroscopic analysis module with the
interface being created by the homogenization procedure. The macroscopic analysis is performed using a
displacement based finite element code with plane strain QUAD4 elements. Numerical integration in these
elements uses one-point reduced integration and hourglass control (Koh and Kikuchi, 1987). Material
constitutive relations at each integration point of elements are obtained from homogenization of micro-
scopic VCFEM results. Microscopic stresses oj; are averaged to yield macroscopic stresses X;;. The mi-
croscopic VCFEM is also invoked to evaluate the homogenized elastic—plastic tangent modulus £EY by
applying unit components of macroscopic strain.

5. Computational subdomain level-0 in the hierarchical model

Level-0 corresponds to macroscopic regions (£2;0 C Qmar()) in Fig. 2a, where deformation variables like
stresses and strains are relatively uniform in their macroscopic behavior. Scale effects are negligible and
local constitutive relations may be derived from postulates of zero RVE volume in the limit and periodicity.
It is assumed that macroscopic analyses with homogenized constitutive relations are sufficient for these
regions. Anisotropic constitutive relations with varying parameters are developed for continuum analysis of
heterogeneous microstructures with elastic—plastic constituent phases. To account for the details of mi-
crostructural morphology, the constitutive model is based on two-scale analysis using the asymptotic ho-
mogenization method and microstructural analysis by VCFEM. A continuum constitutive model can
greatly enhance computational efficiency over two-scale analysis.

5.1. An elastic—plastic constitutive model

Various continuum constitutive models have been proposed, based on unit cell analyses of composite
and porous microstructures. One parameter plastic potential functions with assumptions of anisotropy
have been introduced in Sun and Chen (1991) and Xie and Adams (1995) for composite materials, where
the parameter is determined by least squares fitting of unit cell characteristic responses. Bao et al. (1991)
have used the same hardening exponent for the composite as for the matrix material. A widely used
continuum constitutive model for porous materials is that of Gurson (1977), which has been modified by
Tvergaard (1982) with unit cell analysis to incorporate the effects of void growth and coalescence. Besides,
the limitations in representing actual microstructural heterogeneities, a number of these constitutive models
do not adequately accommodate variations in constitutive parameters with evolving deformation and do
not account for post-yield anisotropy. Terada and Kikuchi (1995) have tried to overcome this by using the
asymptotic homogenization to develop an extensive numerical response database in the strain space. In-
stantaneous overall composite properties are determined from discrete values of homogenized stress—strain
values at points of this database. This approach, however, leads to huge database to cover all possible
deformation paths and requires solving an inordinately large number of RVE boundary value problems.
Fish et al. (1997) have used the idea of transformation strain fields, introduced by Dvorak and Benveniste
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(1992), to develop a two-point averaging scheme based on the mathematical homogenization theory with
piecewise constant transformation fields. However, approximating the eigenstrains with low order poly-
nomial functions may not be able to fully account for large gradients in stresses and strains between phases.

Motivated by two considerations, a piecewise continuous elastic—plastic constitutive model with an
anisotropic yield function is developed in this paper. The first is an accuracy consideration, in that it should
account for the microstructural morphology, e.g. spatial distributions, shapes, sizes and properties of the
individual phases, phase interactions, as well as the evolving stress and strain fields. This can be achieved if
the model is developed from detailed finite element analyses of the RVE (e.g. VCFEM analysis), subjected
to a wide variety of loading conditions. The second is an efficiency consideration, since the creation of a
prohibitively large numerical database with a very large number of numerical experiments is of no con-
sequence. The efficient development of a constitutive model, accounting for underlying evolution of state
variables, is accomplished by generating piecewise continuous model parameters from data in a discretized
strain space (Fig. 4). Numerical data points in the strain space are systematically created through a se-
quence of computational RVE analyses subject to an ordered set of macroscopic strains and strain paths.
The strain space in Fig. 4 is discretized into cubic elements, each containing 32 nodes or data points. From
the computational RVE analysis, constitutive parameters like yield function coefficients and plastic work
are generated for each nodal point. The constitutive relation at any point in the strain space are then
obtained by interpolating nodal values using conventional shape functions. Elastic—plastic models devel-
oped in the ensuing sections are for plane strain assumptions.

Xy

(C>Zxxa2yyazzy)

---- Loading Direction

Cubic Elements
for interpolation

Yy

XX

0 \

Fig. 4. A e, —e,, — e,, strain sub-space, discretized into cubic elements for interpolating constitutive model parameters. The nodal
values of stresses and plastic work are numerically generated.
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5.1.1. Linear elasticity

Orthotropic homogenized elastic material properties are obtained by asymptotic homogenization in
conjunction with the VCFE analysis of the composite and porous microstructures from Eq. (19) as ex-
plained in Ghosh et al. (1995). With plane strain assumptions, three separate VCFE analyses are conducted,
each corresponding to an independent component of the macroscopic strain {e.,, e,,, e,,}. The orthotropic
elasticity tensor is stored for macroscopic analysis.

5.2. Elasto-plasticity with anisotropic yield function

The inclusion phase in composites are assumed to be linear elastic, while the matrix phase is assumed
elastic—plastic for both composite and porous materials. In plane strain modeling, an assumption that the
total plastic strain in the out of plane or ‘third’ direction is zero, is made. The yield function can then be
described in terms of the macroscopic in-plane stress components (2, 2,, and X,,). The yield function for
porous and composite are written using Hill’s 1948 anisotropic yield function (Hill, 1965; Xie and Adams,
1995) in conjunction with the hydrostatic stress dependent models of the Tvergaard—Gurson (Gurson, 1977
Tvergaard, 1982) as

C(Z, —2,) +332 ,
— ( ,V}) xy+H h(\/g(zxx+z)w)> _120’

V2% AU 2
where ey, ey, e, are the macroscopic in-plane strains, C(ey, ey, €y, W) is a strain dependent yield surface
parameter and Y, (1) is the flow stress in shear. For the composite materials the dependence of pressure
on yielding is deemed negligible and the hydrostatic stress coefficient H is ignored. Coefficients
C(exs ey, xy, Wy), Yy(W,) and H are determined from computational experiments detailed next. The in-
crement of plastic strain is obtained from the yield function @ by using the associated flow rule for
hardening materials, i.e. &, = A(00/0z).

5.2.1. Coefficient evaluation

5.2.1.1. H and Y;(W,): Computational exercises indicate that the variation of H with increasing hydrostatic
loading is not significant. It is therefore, assumed to be a constant for all load histories. This assumption is
consistent with the Tverggard—Gurson models, where H is determined in terms of the initial void volume
fraction. The constitutive parameters H and Y,(#,) are evaluated in a coupled manner by solving the
microstructural RVE boundary value problems with two distinct loading conditions viz. (i) biaxial tension
loading (X, = X, = Zhya, 21y, = 0) and (ii) pure shear loading (2,, = 2, 2w = 2, = 0). For load con-
dition (1), Eq. (26) becomes

_ Zhyd _
®(Zhya, Zhya, 0, W) = H cosh (\/5 Y,-(Wp)) 1=0, (27)

and for load condition (i), it becomes

333 | 327
¢(070725115VVD) = (;Il/lv)+H— 1=0 or Yf(VVP) = ﬁ (28)
p

2
A

The values of H and Y,(W,) are determined iteratively from Eq. (28) and further validated against Eq. (27).

The steps are as follows:

1. Solve a macro—micro boundary value problem with RVE homogenization, with incremental pure shear
loading. Obtain macroscopic plastic work by averaging the the microstructural plastic work
W, = ﬁ Jo 0;¢;;dQ) and plot the macroscopic shear stress as a function of plastic work 7.
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2. Assume a starting value for H (e.g. 3% f; as in Gurson (1977) and Tvergaard (1982) and evaluate Y, (7},)
from Eq. (28).

3. Solve a pure macroscopic boundary value problem with incremental biaxial loading, using the homog-
enized elastic—plastic constitutive relation and associated flow rule with yield function (26).

4. Plot the e,, — 2yyq and ey, — 2yyq curves for the entire history of biaxial loading.

5. Solve a macro-micro boundary value problem with RVE homogenization with the same incremental bi-
axial loading as in the previous step. Plot the X4 — e, and Xy — e, curves for the entire history of
loading.

6. Compare the results of steps 4 and 5. If the two curves from both methods are within a preset tolerance
everywhere, then the process is terminated and value of H in step 2 is accepted. Otherwise, the entire
sequence is repeated with a different value of H.

5.2.1.2. C(e;j, W,): The coefficient C in Eq. (26) is found to vary considerably with the evolution of plastic
deformation and examples of its variation with straining and plastic work are shown in Fig. 5. While it is
assumed to be a function of the total strain and plastic work, its dependence on load history is assumed to
be negligible. In the discretized strain space of Fig. 4, the value of a piecewise continuous C at any point
may then be obtained by interpolation from nodal values according to

32
Clew, ey, €0, W) = Z Co(Wp)No(exs, €y, exy), (29)
a=1
where C, are the nodal values and N, are shape functions for a 32-noded brick element.
Generation of discretized strain space and nodal parameters: The nodal values of macroscopic stresses
(Zyx, 2y, 2y and the corresponding plastic work W, are first evaluated at each nodal point in a subspace of
the e, — e, — ey, space by solving incremental macro-microscopic boundary value problems with VCFEM
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Fig. 5. Variation of the yield function coefficient C(e,,, e,y, e,,, W;), (a) as a function of  or normal strains for different microstructures,
(b) as a function of plastic work 7.
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and asymptotic homogenization. In this process, macroscopic strain increments are applied to the RVE
subjected to periodic boundary conditions (see e.g. Ghosh et al. (1996, 1997)). Strain increments are applied
along a radial line in the strain space, such that a constant ratio between strain components is maintained,
1e. Aey : Aey, : Aey, =1:tan0: (1 + tan® 0) tan ¢, where 0 and ¢ are the angular coordinates in the strain
space of Fig. 4. The flow stress Y,(},) at each node in Fig. 4 can be obtained from the shear stress—plastic
work plot and Eq. (28). From the values of macroscopic variables (X, X),, X\, Y;(W,)) at a node corre-
sponding to the end of an increment, the coefficient C(ey, ey, €y, W) 18 calculated using Eq. (26).

From the symmetry conditions, only a quarter of the e,, — e,, — e,, strain space is considered for loading
such that 0° < 0 <180° in the e,, — e, plane and 0° < ¢ < 90° outside of this plane. This is indicated in Fig.
4. This chosen subspace of the strain space is divided into 16 cubic brick element with 32 nodal points each.
The location of elements in the strain space are selected to optimally account for the variations in C. These
variations in C with the coordinate angle 0 (location in the e,, — e, plane) and the plastic work W, for the
different microstructures are plotted in Fig. 5. The parabolic form of C in Fig. 5(a) is consistent with the
quadratic term (X, — Zyy)z in the yield function. The minimum values occur near 6 = 135° corresponding
to a pure deviatoric state. The coefficient subsequently increases to account for the increase in plastic work
in the yield function @. In Fig. 5(b), the coefficient C as a function of the plastic work, which corresponds to
the radial direction in the strain space, is plotted. The value of C stabilizes beyond a value of the plastic
work, which is used as the outer boundary of the strain space envelope in Fig. 4.

5.3. Numerical implementation of the constitutive model

The elastic—plastic constitutive model for composite and porous materials is derived from the anisotropic
yield function (26) with associated flow rule and isotropic hardening. In an incremental form, the stress
increments AY; are related to elastic increments of strains (Ae,; — Ae};) admitting additive decomposition, as

Ay = Efjk[(Aek, - Aé}), (30)

where Eijkl is the homogenized elasticity tensor. Using associated flow rule, components of the plastic strain
increment are obtained as

0P
62,/

(31)

Elimination of the flow parameter AL from the above equations results in two equations,

Rl Gl 0P Rl
o) ) =0 selon) -4 lam) = %

These equations are solved using the backward Euler integration method, with gradients evaluated at the
end of the increment. With known increments of strain, the resulting set of Eq. (32) together with the yield
function (26) are solved iteratively by using the Newton-Raphson method. The stress increments are ob-
tained by the following steps:

1. Initialize values of AX,,, AY,, and AX,,.

2. Calculate the gradient (643 / 62, j) of the yield function and solve for the increments of plastic strain Ae? ,
Aef and Aef from Egs. (30) and (32). Update the stresses and plastic work using the relatlon
AWy = 2 Ael + ZWAef;y + nyAefC’y.

3. If @ <tol; and correction to plastic strain increment 5@5’/ < tol,, where tol; and tol, are prescribed toler-
ances, then stop. Otherwise go to step 2.

The parameter C is then obtained from the interpolation Eq. (29).
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5.4. Numerical examples with the continuum constitutive model

The elastic—plastic constitutive model is validated by comparing the results of macroscopic numerical
simulations with those generated by macro—micro scale analysis using asymptotic homogenization. Ex-
amples are conducted for both composite and porous materials with different microstructure morphologies,
viz. different shapes, sizes and spatial distributions of the heterogeneities.

5.4.1. Analysis of composite microstructures
Six microstructural RVE’s of 20% V; Alumina—aluminum composite with Alumina fiber in aluminum
matrix, as shown in Fig. 6, are analyzed. The RVE’s are classified as

(a): Square edge pattern with a circular inclusion (C1),

(b): Square edge pattern with an elliptical inclusion (aspect ratio a/b = 3) (C2),

(c): Random pattern with 25 identical circular inclusions (C3),

(d): Horizontally aligned random pattern with 25 identical elliptical inclusions (C4),
(e): Randomly oriented random pattern with 25 identical elliptical inclusions (C5),
(f): Random pattern with 17 random shape and size inclusions (C6),

The material properties for the elastic alumina fiber are Young’s Modulus (E.) = 344.5 GPa, Poisson ratio
(v.) = 0.26; and for the elastic—plastic aluminum matrix are Young’s Modulus (E,) = 68.3 GPa, Poisson
ratio (v,,) = 0.30, initial yield stress (¥p): 55 MPa, and Post Yield hardening law: geqy = ¥p + 2.08¢”

eqv”

The RVE’s are subjected to four different types of loading viz.

o L1: Pure shear loading with increments (AX,, = AX,, = 0,AX,, = AX)

e L2: Uniaxial tension loading with increments (AX,, = AX, A, = AX,, =0)

o [.3: Biaxial tension loading with increments (AZ,, = AX,, = AX A%, =0)

e L4: Biaxial tension—compression loading with increments (AZ,, = —AX,, = A, AZ,, = 0)

The stress—strain response of the six composite microstructural RVE’s with the four loading conditions
are conducted and the results for simple tension (L1) are depicted in Fig. 7. The results by the constitutive
model and two-scale asymptotic homogenization approach are generally found to agree very well for the
entire range of loading upto fairly high level of straining. The only discrepancy is found with the biaxial
tension loading condition (L3), for which the deviation strains are shown in Table 1. However, the devi-
ations occurs at high strains levels, for which the stresses are nearly twice the matrix yield stress. It is
important to note that the deviation of continuum model response from the two-scale asymptotic ho-
mogenization response can be used as a signal for switching from the former to the latter type of analysis in
a multiple scale simulation.

As an example of a structural analysis with the two approaches, a square plate with a square hole is
solved with tension loading on two opposite faces. A quarter of the plate with symmetry and loading
conditions is shown in Fig. 8(a). A total traction of 55 MPa is applied in 10 equal increments. The material
is a 20% V; Alumina—aluminum composite with the microstructural RVE consisting of 15 identical circular
inclusions dispersed randomly in the matrix (Fig. 8(b)). The material properties are the same as in the
previous example. Comparison of the results are made through contour plots of the macroscopic stress X,
(shown in Fig. 9) and macroscopic plastic work #, (not shown). The figures reveal that at all locations the
difference in the two approaches is less than 1%. However, the computational efficiency of the macroscopic
analysis with the continuum constitutive model is far superior than the two scale analysis. The scale up in
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(C5,V5) (C6,V6)

Fig. 6. Microstructures with different shape, size, orientation and spatial distribution, for 20% volume fraction composite
(C1,C2,C3,C4,C5,C6) and porous (V1,V2,V3,V4,V5,V6) materials.

efficiency for this problem is approximately 75 000%, and is therefore very desirable when only macroscopic
results are of interest.
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Fig. 7. Comparison of the stress—strain results in the composite for the uniaxial loading test by (i) macroscopic analysis with the
homogenized constitutive model and (ii) two-scale analysis with asymptotic homogenization model for (a) C1, (b) C2, (c) C3, (d) C4,
(e) C5 and (f) C6 microstructures.
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Table 1

Maximum strain (%) in the loading direction at which the constitutive model starts to deviate from the two-scale homogenization
computations

Model/loading ci &) C3 C4 cs C6
L3 0.07% 0.04% 0.08% 0.055% 0.08% 0.075%
zoMoNoN

| °lo1e
¥

(a) (b)

Fig. 8. (a) Finite element model for a quarter of the square composite plate with square hole and (b) the VCFE model of the mi-
crostructural composite RVE.
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I 5.307E-02

Min. - 3.588E-02
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Fig. 9. Comparison of macroscopic stress (2,,) contours in composite material with (a) the homogenized constitutive model and (b)
two-scale analysis with asymptotic homogenization.

5.4.2. Analysis of porous microstructures
The six microstructural RVEs are analyzed again for porous materials, with voids replacing the inclu-
sions in Fig. 6. The material considered is an aluminum alloy with 20% void volume fraction and the
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following elastic—plastic properties: Young’s modulus (E,)=68.3 GPa, Poisson ratio (v,)=10.30, initial
yield stress (¥p) = 55 MPa, and post yield hardening law: geqy = ¥ + 2.086§év. The same four load histories
(L1,L2,L3,L4) are applied. An important difference between the composite and porous microstructures, is
that in the latter plastic strain localization in small regions is a common occurrence depending on the void
morphology and the nature of loading. Such non-homogeneous distribution of plastic strains is a major
source of discrepancies between responses by the two approaches and act as ‘limiters’ for the range of
application of the continuum model. Microstructures with homogeneous and non-homogeneous distri-
butions of plastic strain are shown in Fig. 10. For the microstructure V1 (square edge pattern with a
circular void) the strain distribution is quite uniform in pure shear loading, while for the microstructure V2
(square edge with an elliptical void) there is intense localization with narrow ligaments. Consequently, the
continuum model ceases to be effective.

As in the case with composites, the main challenge for the homogenized constitutive model is encoun-
tered during simulations with biaxial tension loading, i.e. (AZ,, = AX,, = AX, and AX,, = 0). The first term
in the yield function (26) drops out for this loading and the model delivers the same amounts of plastic

Max‘\_.

¢ 9.411E400
L 7.529E400
| 5.646E400
| 3.764E400
L 1.882E400
Mln.ﬂ L 0.000E+00
(a)

Max~, [ 3.155E400
| 2.524E400
| 1.803E+00

: : b 1.262E+00
G b 6.310E-01
Min. Vad L 0.000E+00

(b)

Fig. 10. Contour plot of the microscopic plastic strain €” in the voided microstructures under pure shear loading condition, for (a) V1
(b) V2 microstructures.
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Table 2
Chart showing the divergence of the constitutive model from the two-scale homogenization computations; y: acceptable for the entire
range of loading (1% strain); n: error exceeds a given tolerance at early stages

Model/loading \%! V2 V3 V4 V5 A%
L1 y n y n n n
L2 y n y n n n
L3 y n y n n n
L4 y n y n n n

strains in the x and y directions. Due to the lack of anisotropy in the hydrostatic term in the yield function,
the continuum model is effective only for those microstructures that exhibit near isotropic plastic behavior
for this loading. Microstructures V2 (square edge with elliptical void) and V4 (horizontally aligned elliptical
voids with random spatial distribution) shows very different strain responses for each direction with biaxial
loading. Thus, the continuum constitutive model is largely ineffective for these RVE’s. The microstructures
V5 (randomly oriented identical elliptical voids with random spatial distribution) and V6 (random spatial
distribution with random shape and size) also show significant plastically induced directional effects and the
constitutive models are therefore restricted to the elastic range. The list of performance and strain ranges of
all the microstructures with the different loading are given in Table 2. The microstructures V1 and V3
exhibit relatively isotropic responses and yield satisfactory agreement between responses by the constitutive
model and the two-scale asymptotic homogenization. Comparisons of stress—strain responses for biaxially
and uniaxially loaded RVE’s are made in Fig. 11. These show very good agreement. The RVE’s V2 and V4
exhibit intense localization early on in the straining, while the RVE’s V5 and V6 exhibit marked anisotropy
with biaxial loading. Plastic flow predictions for these RVE’s with the continuum model are therefore not
reliable.

5.5. Level-0/1 mesh enrichment by h-adaptation

The transition between various levels in this model is augmented by an adaptive mesh refinement in-
volving element subdivision or /-refinement in the level-0 and level-1 regions. This local mesh enrichment is
intended to serve two purposes, viz. (a) to identify and reduce discretization error in the computational
model and (b) to reduce modeling error by zooming in on regions of evolving localization due to micro-
scopic non-homogeneity. The latter is also effective in bridging the gap between the macro and microscale
elements by successive element refinement in critical regions, as shown in Figs. 2(a) and 16. The adaptive /-
refinement has been extensively discussed in literature (Zhu and Zienkiewicz, 1988, 1992; Melosh and
Marcal, 1977; Demkowicz et al., 1985; Bass and Oden, 1987) and the latest advances in adaptive methods in
mechanics have been presented in a compilation by Ladeveze and Oden (1998). Within the category of h-
adaptive procedures, two methods, viz. the mesh enrichment or refinement methods (Zhu and Zienkiewicz,
1988; Bass and Oden, 1987) and mesh regeneration methods (Zhu et al., 1993; Paulino et al., 1999) have
evolved. While the mesh regeneration methods have been preferred for their relatively higher efficiency, the
enrichment method is deemed more suitable for the present work. This is due to the fact that the regen-
eration method alters element locations with respect to the underlying material RVE and will necessitate
cumbersome mapping.

Following procedures outlined in Bass and Oden (1987), the mesh refinement procedure entails subdi-
viding each quadrilateral QUAD4 element into four smaller elements, thus adding four new nodes on the
boundary and one in the center. For compatibility with the displacement fields on the boundary of larger
adjacent elements, linear constraint relations are imposed on the new boundary nodes of the subdivided
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Fig. 11. Comparison of the stress—strain results in the porous material for (a) bi-axial tension for V1 microstructure (b) bi-axial tension
for V3 microstructure, (¢) uniaxial tension for V1 microstructure and (d) uniaxial tension for V3 microstructure.

element. A static condensation process is then used to eliminate the explicit inclusion of the new nodes in
the global stiffness and load vectors (see Bass and Oden (1987) for details). Numerical integration in each

QUAD4 element after adaptation is performed by one point reduced integration with hourglass control
(Koh and Kikuchi, 1987).

6. Computational subdomain level-1 in the hierarchical model

The level-1 regions (2, C Qmar(p)) in the computational domain are intended as ‘swing’ or ‘transition’
regions, where microscopic information in the RVE is used to decide whether microscopic computations
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are necessary for these regions. They are identified by locally high gradients of macroscopic variables e.g.
stresses, strains strain energy etc. that are indicators of imminent damage evolution or localization in the
microstructure. Computations in these regions are still based on assumptions of macroscopic uniformity
and periodicity of the RVE. Concurrent with macroscopic simulations, computations are necessary in the
the microstructure to monitor the initiation and growth of damage. The RVE response for level-1 elements
is explicitly calculated using asymptotic homogenization and VCFEM analysis. The computations in ele-
ments belonging to the level-1 domain undergo a sequence of finite element analyses as follows:

(a) Microstructural analysis of the RVE, subjected to the sequence of unit macroscopic strains or incre-
ments with periodicity boundary conditions to generate homogenized tangent modulus (E}f.kl).

(b) Macroscopic analysis of the structure using (E;j.,d) of step (a), to evaluate macroscopic variables e.g.
stresses and strains due to applied loads.

(c) Microstructural analysis of the RVE at each sampling point (e.g. integration point) of macroscopic
elements, with actual macroscopic strains and increments obtained from step (b) and periodicity condi-
tions on the RVE boundary. Microscopic stresses and strains (o€, €°) are thus calculated in the RVE’s of
each element. For linear elastic constituent phases, the microstructural stress recovery process can be
achieved by using a linear combination of solutions with unit strains from step (a). However, explicit
solution of non-linear equations are required for problems with non-linearity. This is executed in an it-
erative manner in this paper.

Computational requirements of elements in this level are considerably higher than that for level 0. At
each integration point in the macroscopic computational mesh, a complete microstructural analysis of the
RVE problem is done several times (at least three times for step (a) and once for step (c) in the present case)
within each iteration loop. Thus, the level-1 elements are computationally more expensive compared to
level-0 elements. It is therefore important to design robust criteria to avoid redundant element transition
from level-0 to level-1. It is also critical that this level be discontinued once the microstructural damage or
instability evolved beyond pre-determined threshold values.

7. Computational subdomain level-2 in the hierarchical model

Level-2 regions (Fig. 2(b)) are classified as those with severe microstructural non-uniformities in the form
of evolving damage. This results in loss of statistical periodicity of the assumed RVE and these regions may
be identified with Quarmp) in Eq. (5). In the computational model, the level-2 elements (2, C Qumatmp))
materialize from the microstructure of level-1 elements. It is assumed that prior to this transition, the level-1
elements have been refined to reach sufficiently high spatial resolution. In Q,,, the macro—micro model of
level-1 switches to a completely microscopic model.

The method of generating the level-2 microstructure in each element is illustrated in Fig. 12. An extended
microstructure is first created by repeating RVE’s in succession, to cover the entire region of the macro-
scopic level-1 elements in transition to level-2. In Eq. (7), a local non-periodic region is created as

AU (33)

where Y/ corresponds to the RVE’s in a periodic domain, adjusted for microscopic evolution. This is then
overlayed by the macroscopic elements to accurately encase the level-2 region with clearly delineated
boundaries. Each level-2 element now contains a heterogeneous material distribution (¥) that is defined as
the intersection of the non-periodic material region YkMAT(“p) and the element domain 7,
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Fig. 12. Creating extended microstructure; (a) a mesh of macroscopic elements with an underlying microstructure of repeated RVEs,
(b) the extended microstructure by Voronoi tessellation.

Ye = AT N g (34)

This region is subsequently tessellated into a mesh of Voronoi cell elements (Fig. 12(b)). Traction continuity
between level-2 microstructural region and neighboring level-0/level-1 elements is incorporated through a
layer of transition elements.

7.1. Damage criterion for particle cracking in level-2

The level-2 VCFEM modeling consist of brittle reinforcing particles and a ductile matrix material. For
the brittle particulate materials, microstructural damage initiation is assumed to be governed by a maxi-
mum principal stress based criterion. In this criterion, a crack is initiated when the maximum principal
stress in tension exceeds a critical fracture stress ¢ at a point. In the computational procedure, complete
particle splitting is assumed to occur in the form of an elliptical void, normal to the principal direction, as
soon as the principal tensile stress reaches ¢*. In the case of particle splitting, the crack tip extends
nominally into the matrix. In the incremental computational procedure, more than one point may exceed
the critical ¢ value during increment. The location of a single crack is determined by a weighted averaging
method as

(ry) o7 ()
X i
Xdamage = Wa Ydamage = Z o (x) V[Uf(X,J/) = O_cr]’ (35)

where ¢9(x,y) corresponds to all values of maximum tensile principal stress larger than ¢* in the particle.
The crack is oriented at right angles to the principal stress directions at (Xgamage, Vdaamage) and extends to the
interface on both sides.

8. Coupling the levels in the hierarchical FE model

While level-0 elements (Ej € Q) and level-1 elements (E;; € Q;) are coupled naturally through the
familiar assembly process, the interfacing of level-2 (Ej, € Q),) elements with either of the first two requires
more attention. The mismatch in the number of boundary nodes in these elements necessitate the intro-
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Fig. 13. Interfaces between the level 0/1 £y and E); elements, transition E,, elements and the level-2 E), elements.

duction of transition elements (E, € Q),), acting as buffer zones as shown in Fig. 13. Both Ej, and E;; el-
ements employ VCFEM for setting up the element stiffness matrices and load vectors. The entire com-
putational domain is thus comprised of

Q ={QpUQuUQp: Q=" Ep; Qn =U"En; Qp = U% Ep UUY" Ey}

for which the nodes are differentiated as (see Fig. 13)

(i) (nd"") or internal level-2 Voronoi cell element nodes that are not on any interface or boundary,

(i) (nd'*?) or Voronoi cell element nodes on the E,—E, interface,

(ii1) (ndlz/ ") or Voronoi cell element nodes on E»—E,; interface,

(iv) (ndlm/ ") or nodes on Ej1—E interface that belong to Ej, and E;; elements,

(v) (nd*) or Voronoi cell element nodes on £y —E;, interface that do not belong to E; and E;; and need
to be statically condensed. In an incremental analysis for elasto-plasticity, the principle of virtual work
for the computational domain at the end of the nth increment may be written as a scalar valued function
G in terms of variables at different levels as

G (Au, du) = / %, + Aw) % 4o — / £du,dQ + / %, + Aw) % 4o
o O; 2! ot O;
6514;
— / f,5u, dQ + / O','j(un + Au) —dQ — / f,5u, dQ — / tl‘SU,* dr
oy oy’ a; oy rig!
- / t5u;dI" — / t,5u;dr. (36)
it it

In an iterative solution process with the Newton—-Raphson method, a consistent linearization by taking the
directional derivative of G"*! along incremental displacement vector Au, yields the tangent stiffness matrix.
For the ith iteration, the assembled equations have the following structure:

K0/LI0/1 10/1,12 i AU/ i AF/1 i

[ Ko g } {AUIZB } :{ AF2 } (37)
Here AU/ corresponds to displacements at nodes (nd’”’!) that belong to elements Ej and E; in the
computational region Q; U Q, as shown in Fig. 13. It should be noted that they also include nodes at the

interface of elements E;/E;; and elements E.. The displacements AU™?® on the other hand corresponds
to nodes (nd’*"") on the interfaces of elements E,, and elements E,, or to nodes (nd’”?) on the interfaces
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between two Ej, elements. Contributions to the stiffness matrix [K] and load vector {F} for elements in
Q;, U Q;, may be obtained as

G
(K.IO./I‘IO/I)[:/ aNS%%dQ
iojB Q,[,O\lugr;l\l Ox; Oey Ox; 7

. ~ ONE
(F) = / fiNSdQ+ / LNSdr — / (up + Au') -2
a o oy ay ! %

dQ,

J

o, f correspond to the node numbers and N, are the shape functions of macroscopic elements. For the
elements E; and E; belonging to €,,, contributions to the stiffness matrix and load vectors are obtained by
VCFEM calculations, together with static condensation. The transition element facilitates continuous
variation from microscopic to macroscopic elements without jumps or discontinuities. On the Ej)—E;
interfaces, this is accomplished by constraining displacements at nodes nd* to conform to displacement
interpolation of the adjacent E;y or E;; elements. The constraints at the nodes nd* are applied in terms of
displacements at nd”"/" as

{AU*} = [o]{AU""Y, (38)

where [Q] is the constraining matrix. For bilinear QUADA4 level-0/1 elements, each row of [Q] consists of the
inverse of the distance of the constrained node to the corner nodes. The interfaces with the £, elements, i.e.
the E»—E,; interfaces are treated in the same way as E;—FE), interfaces.

The displacements AU in Eq. (37) correspond to those at the boundary nodes (nd*/, nd’>/"", nd’"/*"
and nd*) of level-2 elements that contain the microstructural VCFE model. To account for the contribution
of the internal nodes (nd’?), it is therefore necessary to use static condensation and recovery process for
representing the VCFEM displacement solutions at the internal nodes AU™! in terms of the displacements
at boundary nodes AU'B, where

AUR? I 0 0 O
AUR2
AUIZ/U‘ 0 1 O 0
12B — 12/tr
{AU }* AUIOl/tr 0O 0 I O AAUIOI//Itr ) (39)
AU 000 o|\AY

where [/] and [Q] are the identity and constraint matrices respectively. In a VCFEM solution process the
stiffness matrix and the load vector may be partitioned accordingly as

KPB.2B p2BR1] (AD2B AF2B

|:K]21,12B K211 } { AU } = { AF! } (40)
Static condensation of the internal degrees of freedom yields

“KZZB.IZB] — [k [Km,mrl [Kzzl,zzB]] (AU} = [AFPBY — [g2B20] [KZZIJZI]*] {AF™Y, (41)

These stiffness matrices and load vectors are then used in the assembly process of Eq. (37).

9. Adaptation criteria for various levels

It is evident that appropriate criteria need to be established for transitioning the computational sub-
domains from one level to another. In addition to level transitions, element refinement by s-adaptation is
also executed in level-0 and level-1 regions for reducing discretization error, identifying regions of high
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solution gradients and zooming in to reduce the scale gap between macroscopic and microscopic elements.
The criteria used for element refinement and level transition are delineated below.
Level 0/1 h-adaptation may be executed based on an error measure may be defined as

Ee = [|f (u—w)], (42)
where u is the true solution, w, is its finite element approximation, f is any appropriate function of de-
formation e.g. energy, stresses, strains etc., and || - || denotes a norm of the function. Work on 4-method of

mesh refinement (Zhu and Zienkiewicz, 1988; Melosh and Marcal, 1977, Demkowicz et al., 1985) have
proposed various forms of fand norms to optimize the computational effort and improve reliability. In this
work, elements are subdivided based on an element level parameter defined as

(E.), = gi V@I (43)

VNE

where (E. ), corresponds to a threshold element parameter, above which the element needs to be refined
and gi is a prescribed quality index. ||f(w,)|| = Yo7, |If (w:)]|, is the sum of element norms of any function
for the entire computational domain and NE is the number of elements. Such error criteria is conven-
tionally used to equi-distribute errors due to discretization by mesh refinement for relatively well behaved
problems. However, for mesh dependent problems with inherent localizations or singularities in the so-
lutions, the above criteria may be used for signaling steep gradients in the solution variables and may be
used for increasing the resolution in the region of high local gradients. In this work ||f(u,)||, is taken to be
the maximum difference in plastic work with neighboring elements, i.e.

e adjacent
( / Zije;'.}dQ> _ ( / z,,e;;ag)
Q Q

with a value of gi=1.5.

Level-0 to level-1 transition of Ej elements takes place in accordance with criteria based on macroscopic
variables e.g. (Z, e) in the continuum model that are related to critical microscopic variables. Additionally,
this transition is activated when the continuum level model in Section 5.1 starts to decrease considerably
from the results of two-scale homogenization. Different criteria are used for composite and porous ma-
terials.

1/ (ws)ll, = Max

(A) For composite microstructure with inclusions

(2w £+ 2)
2

Here %, is the maximum principal stress in Eyy, X is a critical stress that is a pre-determined fraction r of
the critical fracture stress (¢) for microstructural inclusions. The fraction r is selected to be 1/3 in this
study. The second condition is established since the earliest digression from the homogenization results is
observed for biaxial loading, and X" established from the results of Section 5.4.

(X)) = X" =r*06" and/or > Xy (44)

(B) For porous microstructure with voids: Strain based criteria are deemed more important in the case of
damage in porous materials and hence transition is activated when

. ex e,

(@)= ()" =rx (/)" and/or % > el (45)
where é” <: 2/ %eﬁefj) is the macroscopic effective plastic strain in Ej and (e?)” is a pre-determined frac-
tion r of a suitably assessed high microstructural plastic strain (e”)”. Again ¢ is established from the
limiting values of biaxial strain in Section 5.4.
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Level-1 to level-2 transition of E;; elements occur when a sufficiently high spatial resolution is attained by
h-refinement and when the RVE is deemed to be on the verge of significant damage evolution. The adaptive
criteria, which monitor the transition from elements E;; to Ej, are prescribed in terms of topological
evolution of microscopic damage as

(A) For composite microstructure with inclusions,

Rdamage =—— =R, (46)

(B) For porous microstructure with voids,

ADR
AR
where Ryamage 1S the ratio of the number of damaged inclusions (NPD) to the total number of inclusions
(NP) for composites. For porous microstructures, it is the ratio of the damaged area corresponding to

regions which have high plastic strains to the total RVE area. R, is a prescribed critical ratio and varies
from problem to problem.

> R, (47)

Rdamage =

10. Numerical examples with the adaptive multi-level model

Numerical examples are solved to understand the effect of structural geometry and microstructural
morphologies on the macroscopic and microscopic responses. In all examples, the inclusions are assumed to
be linear elastic which can crack by the principal stress criterion and the matrix is elastic—plastic. In the first
example, a RVE consisting of a single circular inclusion is modeled by level-1 and level-2 elements under
applied uniaxial tension loading. In the first case, the E;; macroscopic element is coupled with the mi-
croscopically periodic RVE by asymptotic homogenization, while in the second case, the tension load is
directly applied on one edge of the Voronoi cell element E;, model of the RVE. The loading is continued
beyond the level of inclusion cracking. This is represented by the loss of stress carrying capacity in the
averaged stress—stain plot of Fig. 14(a). Though the response is similar in the initial elastic phase, it diverges
with the onset of plastic flow. The damage occurs earlier in the level-1 element due to the additional
constraint of periodicity. The contour plots of inclusion maximum principal stress, normalized by the
critical stress ¢, are compared at a macroscopic strain 2.1% in Fig. 14. This is just before cracking by the
level-1 model. A considerably lower stress level is seen for the level-2 model. Such over-estimation of
stresses with periodicity boundary condition near free boundaries necessitate the use of the proposed multi-
level models.

10.1. Effects of inhomogeneity size (scale effect)

Neglecting scale effects, that reflect the actual size of microstructural constituents, is a characteristic of
homogenization with assumptions of statistical periodicity of a vanishingly small RVE. While elements £,
and E; conform to this restriction, the level-2 elements £, in this work depict the actual size of the mi-
crostructure through the multi-level coupling and hence scale effects prevail.

In this example the effect of particle or void size on the evolution of damage is investigated. The two
different microstructural RVE’s considered in Fig. 15(b) (i) and (ii) have identical distribution (square edge)
and same particle or void area fraction of V; = 20%. But the RVE sizes are different in that, the size of the
smaller RVE (i) is 0.5 mm x 0.5 mm, while that of the larger RVE (ii) is 1 mm x 0.5 mm. The macroscopic
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Fig. 14. (a) Macroscopic axial stress—strain plots for a single RVE in tension modeled by level-1 and level-2 elements; Maximum
principal stress distribution in the inclusion by (b) level-2 element and (c) level-1 element.

structure is a square plate with a square hole, for which the initial level-0 mesh with dimensions is shown in
Fig. 15(a). Only a quarter of the plate is modeled from symmetry considerations. The smallest size of
macroscopic element allowed in this analysis by 4-adaptation is set to 1 mm. Thus, the E;; elements contain
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Fig. 15. (a) A quarter of the level-0 starting macroscopic model of a square plate with a square hole, (b) four different microstructural
RVE’s for the plate model.

only one element in the VCFEM model for the larger RVE (ii) but four elements in the VCFEM model for
the smaller RVE (i). The material properties for both composite and porous materials are as follows:

Aluminum matrix (elastic—plastic): Young’s modulus (E,,) = 68.3 GPa, Poisson ratio (v,,) = 0.30, initial
yield stress (¥)) = 55 MPa, and post yield hardening law: oeqy = ¥ + 2.08e’e’flv.

Alumina particle (elastic): Young’s modulus (E.) = 344.5 GPa, Poisson ratio (v.) = 0.26, critical particle
cracking stress (¢°) =0.3 GPa.

The load is applied in 20 equal increments upto a total displacement of 1 mm as shown in Fig. 15(a).

For the composite microstructures, Fig. 16 depicts the evolved macroscopic and level-2 computational
domains at the end of loading stages. The level-0, level-1, level-2 elements are shown in white, grey and
black, respectively, for the adapted macroscopic mesh in Fig. 16(a) and (b). The evolution of the levels and
mesh with /-adaptation is provided in Table 3. The effect of the microstructure size becomes more pro-
nounced with increasing deformation. A larger level-2 domain (29 macroscopic elements) with a smaller
level-0 domain is evidenced for the smaller RVE (i). The effect of RVE size on the pattern of particle
cracking is very significant. The level-2 region shows 24 cracked particles for the RVE (i) as opposed to six
cracked particles for the RVE (ii). The path of evolution of cracked particles is quite different for the two
models. For the RVE (ii), the aggregate microscopic cracks is found to propagate perpendicular to the
macroscopic loading direction and all the microcracks have the same orientation as the chain or macro-
crack. For the smaller particles in RVE (i), the chain of microcracks or the macrocrack is observed to move
at 45° to the loading direction with individual microcracks predominantly at 90° to the loading direction.

The contour plots of macroscopic and microscopic plastic strain distribution at the final loading stage
are shown in Figs. 17 and 18 for the two microstructures. The macroscopic strain distribution for both
models shows higher strain concentration at the corner of square hole with increased loading. While the
macroscopic strains are not very different for the two RVE’s, significantly larger local plastic strains are
seen in the level-2 microstructure of RVE (i). A better representation of this difference is seen in the graphs
of Figs. 19 and 20. The macroscopic (averaged) stress X, history at the critical corner in Fig. 19 does not
indicate significant difference and hence exhibits little scale effect. The stress drops in this figure correspond
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Fig. 16. Macroscopic three level evolved mesh for the composite material at the end of the loading cycle for (a) the larger RVE (ii) and
(b) smaller RVE (i); the corresponding level-2 region with the (c) the larger RVE (ii) and (d) smaller RVE (i). Level-0 is with white

elements, level-1 is with grey elements and level-2 is with black elements.

Table 3

Evolution of elements at various levels with straining for composite microstructure

% of Total dis-

Level-0 elements

Level-1 elements

Level-2 elements

Total

placement RVE (i) RVE (i) RVE (i) RVE (ii) RVE (i) RVE (i) RVE (i) RVE (ii)
50 199 204 1 0 4 4 204 208
75 181 201 22 17 10 7 213 225
90 167 188 34 34 15 18 219 240
100 162 178 42 43 29 25 234 246
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Fig. 17. Contour plot of plastic strain e” for the composite square plate: (a) the macroscopic averaged strain and (b) the level-2 mi-
croscopic strain at the critical region for the larger RVE (ii) model.

Max~ 9500 MK - 9.749E+01

.. . - 1.000E+01
Critical Region R in

3.151E+00 -'] I | I 8.000E+00

I 2.364E+00 I 6.000E+00

r 1.576E+00 F 4.000E+00

- 7.878E-01 + 2.000E+00

T 0,000E+00 o L 0.000E+00

Fig. 18. Contour plot of plastic strain e’ for the composite square plate: (a) the macroscopic averaged strain and (b) the level-2 mi-
croscopic strain at the critical region for the smaller RVE (i) model.

to particle damage. The histogram of the evolution of particle cracking however shows a considerably
different pattern and a much higher rate of cracking for RVE (i).

The same problem is solved for porous microstructures with the two sized RVE’s, but with a total
displacement of 0.4 mm. The evolved levels and meshes in the computational models at the end of loading
are shown in Fig. 21(a) and (b) and the corresponding level-2 microstructures in Fig. 21(c) and (d). The
evolution of the computational domain is also charted in Table 4. It is interesting to note that the difference
in response for the two RVE’s is insignificant this case. This may be attributed to lack of matrix damage or
softening in the model. The plastically hardening matrix does not trigger adequate difference in the ad-
aptation criteria as the particle cracking does for composites. A larger level-1 domain opens up with the
adaptation criteria for elements which appear to be on the verge of strain localization, but subsequently do
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Fig. 19. The evolution of X, at the corner node of square hole for the two microstructures.
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Fig. 20. Histogram of the number of damaged particles as a function of straining.

not make the transition to level-2. The contour plots of macroscopic and microscopic plastic strain dis-
tribution in Figs. 22 and 23, show similar macroscopic strain distributions, but higher strains for the mi-
croscopic model with smaller porosity RVE (i), due to the proximity of voids. This again shows the scale
effect on the solution.
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Fig. 21. Macroscopic three level evolved mesh for the porous material at the end of the loading cycle, for (a) the larger RVE (ii) and (b)
smaller RVE (i); the corresponding level-2 region with the (c) the larger RVE (ii) and (d) smaller RVE (i). Level-0 is with white el-
ements, level-1 is with grey elements and level-2 is with black elements.

Table 4
Evolution of elements at various levels with straining for porous microstructure
% of Total dis- Level-0 elements Level-1 elements Level-2 elements Total
placement RVE (i) RVE (ii) RVE (i) RVE (ii) RVE (i) RVE (ii) RVE (i) RVE (ii)
25 196 196 2 2 0 0 210 210
50 175 175 21 21 4 4 201 201
75 128 128 68 68 7 7 204 204

100 94 94 111 111 17 17 222 222
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Fig. 22. Contour plot of plastic strain &” for the porous square plate: (a) the macroscopic averaged strain and (b) the level-2 micro-
scopic strain at the critical region for the smaller RVE (ii) model.
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Fig. 23. Contour plot of plastic strain &” for the porous square plate: (a) the macroscopic averaged strain and (b) the level-2 micro-
scopic strain at the critical region for the smaller RVE (i) model.

10.2. Homogenization vs. multi-level simulation

The effect introducing level-2 elements on both macroscopic and microscopic response is studied by
comparing a pure level-1 simulation of the square composite plate in the previous example with a multi-
level simulation. The results shown are for the larger particles in RVE (ii). The Fig. 24 shows the micro-
structure near the inside corner by the two models at the end of loading. The boxed RVE’s in Fig. 24(a)
symbolize their periodic repetition. The periodicity constraint results in a considerably large portion of the
microstructure being damaged for the homogenized simulation. The direction of the damage evolution
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Fig. 24. A comparison of the microstructural evolution near the inside corner by (a) complete level-1 analysis and (b) adaptive multi-
level analysis.
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Fig. 25. Comparison of macroscopic stress X2,, along section A-B by level-1 and multi-level analysis.

indicated by the homogenized model is also different from the level-2 simulations. The stress X,, along
section A-B is plotted in Fig. 25 to evaluate the effect of homogenization on stress concentrations near the
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Fig. 26. Macroscopic three level evolved mesh for the composite material at the end of the loading cycle for (a) hardcore distribution
with circular particles, (b) clustered distribution with circular particles, and (c) hardcore distribution with elliptical particles, the
corresponding level-2 microstructures for (d) hardcore (e) clustered and (f) elliptical RVE’s.

corner and free edge. The two models behave similarly upto the neighborhood of the corner. While the
multi-level model predicts a higher peak near the corner, it subsides considerably to meet the traction free
edge conditions. The corresponding microscopic level-2 stress variations for the multi-level model are
shown in the inset.

10.3. Effect of heterogeneity distribution and shape

To illustrate the influence of particle distribution on the macro-microscopic damage response, two
RVE’s are selected with same volume fraction (20%), size (1.0 mm) and number of particles (25). One has a
hardcore distribution (Fig. 15(b), iii), which is a random distribution with a minimum permissible distance
between particles, while the other has one cluster in a hardcore background. Proximity of particles within
the cluster is known to initiate damage in discrete microstructures. The starting macroscopic mesh is the
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same as in the previous examples and a total displacement of 0.55 mm is applied on the edge in equal
increments. The smallest allowed size of macroscopic elements by A-adaptation is set to 1 mm such that
each E), element consists of one RVE.

The evolved macroscopic models for the two RVE’s, at the finish of the loading cycle, are shown in Fig.
26(a) and (b). The level-2 region (black) for the clustered RVE is larger than that for the hardcore RVE.
Within the E;, elements, only one element for the hardcore distribution experiences particle damage as
shown in Fig. 26(d). However, several £, elements for the clustered microstructure exhibit particle damage,
mainly within the cluster (Fig. 26(e)). While the macroscopic averaged plastic strains show very little dif-
ference for the different microstructures in Figs. 27(a) and 28(a), the microscopic plots in Figs. 27(b) and
28(b) clearly depict the influence of distribution. Much higher levels of effective plastic strain values are
observed within the cluster, compared to significantly lower levels in the hardcore RVE. Fig. 29 shows the
evolution of macroscopic stress X, at the corner of the square hole and the number of damaged particles as
a function of straining. The stress drops to lower values for the clustered RVE due to a larger damage
microstructure. More than twice the number of particles are damaged for the clustered case as shown in the
histogram.

To investigate the influence of shape, a RVE (Fig. 15(b) (iv)) with the same volume fraction (20%), size
(1.0 mm) and number (25) is considered. The particles are elliptical with aspect ratio 3.0 and randomly
distributed and oriented. The evolved macroscopic model in Fig. 26(c) shows a larger level-2 region
compared with other two microstructures, with several £, elements exhibiting particle damage. The much
larger number of cracked particles is also observed from the histogram of Fig. 29(b). For this case, both
macroscopic and microscopic plastic strains in Fig. 30 are also considerably larger. The macroscopic stress
2, shows a larger drop due to the increased damage in the microstructure.

10.4. A heterogeneous plate with a macroscopic holes

A different macroscopic domain, viz. a plate with periodically repeated square diagonal array of circular
holes is considered in this final example. The plate is incrementally loaded using prescribed displacement on

Max.
A, - 1.901E400
Max-\ ¢ 4.814E+01
| 1.000E+01
N ) I 1.521E+00
Critical Region I 8.000E+00
| i44iE400 ¢ S0, 0 I8 o3 @l g e
i ! ,‘f‘f;‘. X e L 6.000E+00
5 'f')Cf‘;'ﬁ}()i“
- RO
. O i P St e -
[ 7.605E-01 s LAt R A L 4.000E+00
x "9 CaTan D &
() MASA
()
I 3.803E-01 2 = N5 | 2.000E+00
5
) o L 0.000E+00
Min. L 0.000E+00 Min.

(@) (b)

Fig. 27. Contour plot of plastic strain e” for the composite square plate: (a) the macroscopic averaged strain and (b) the level-2 mi-
croscopic strain at the critical region for the hardcore RVE model.
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Fig. 28. Contour plot of plastic strain e’ for the composite square plate: (a) the macroscopic averaged strain and (b) the level-2 mi-
croscopic strain at the critical region for the clustered RVE model.
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Fig. 29. The evolution of (a) X,, at the corner node of square hole and (b) the number of damaged particles for the three micro-
structures.

the top and bottom surfaces to a total extension of 0.15 mm. Due to periodicity and symmetry, only a part
of domain is modeled as shown in Fig. 31. The radius of the circular holes are 50 mm for the 100 mm x 100
mm square plate as shown in Fig. 31. The microstructural RVE is a 20% volume fraction 0.4 mm x 0.4 mm
square region with a single circular particle. The same material properties as in the previous example are
used with the only exception being that the critical particle cracking stress ¢ = 0.2 GPa.

The adapted multi-level computational domain is shown in Fig. 32 and the number of elements in each
levels with increasing are tabulated in Table 5. The level-2 elements are created along a clear path con-
necting the holes due to localization by particle cracking. Extended portions of the damaged microstruc-
ture in level-2 regions are shown in Fig. 32. The macroscopic plastic strain contour in Fig. 33(a) gives
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Fig. 30. Contour plot of plastic strain e” for the composite square plate: (a) the macroscopic averaged strain and (b) the level-2 mi-
croscopic strain at the critical region for the clustered RVE model.
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Fig. 31. (a) Finite element model for a part of the composite plate with two circular holes and (b) the VCFE model of the micro-
structural composite RVE.

an indication of ‘hot spots’ of evolving damage near the central region. The microscopic strain plots in
Fig. 33(b) show a large fraction of particles cracked and may be interpreted as the initiation of localization
to cause failure between the holes.

11. An example on convergence of the multi-level method

To provide convergence characteristics of the multi-level model, an example problem of an elastic fi-
brous composite with a free-edge and loaded in the out of plane direction, is considered. This classical
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Fig. 32. Macroscopic three level evolved mesh for the composite plate with two holes at the end of loading. The level-2 regions in the
microstructure are shown at the two regions A and B.

Table 5
Evolution of elements at various levels with straining for plate with holes
% of Total displacement Level-0 elements Level-1 elements Level-2 elements Total
16.6 100 0 0 100
33.2 142 0 0 142
49.8 134 20 0 154
66.4 284 98 0 382
83.0 296 164 0 460
91.5 329 237 68 634
100.0 326 272 102 700
Max.~ 1 994E+00 Max - 2.600E+01
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Fig. 33. Contour plot of (a) the macroscopic plastic strain &’ and (b) level-2 microscopic plastic strain € at the region C of the mi-
crostructure in Fig. 32.
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problem was proposed by Pagano and Rybicki (1974) to demonstrate the limitations of effective modulus or
homogenization theory in predicting stress states in laminated composites, especially near the free-edge.
The problem consists of a composite cross-section as shown in Fig. 34(a). The upper half of the cross-
section consists of n periodic rows of aligned cylindrical fibers, arranged in a square array, while the bottom
half is the homogeneous matrix material. The ratio of fiber radius to edge length in the local RVE of Fig.
34(b) is /1 = 0.3, corresponding to a local volume fraction of 28.2%. The body is subjected to a generalized
plane strain loading with out-of-plane loading, prescribed as ¢, = 1. Due to symmetry in the xz and yz
planes only one quarter of the laminate is modeled (Fig. 34(a)). Symmetric boundary conditions are em-
ployed on the surfaces x = 0 and y = 0, and the top and right surfaces are assumed to be traction free. The
material properties for the boron fiber and epoxy matrix are prescribed as Eporon = 60 x 10° psi,
Vboron = 0.2, Eepoxy = 0.5 x 10° psi and vepoyy = 0.34.

11.1. Microscale VCFEM simulations

To establish convergence of solutions at the microscale, the adaptive Voronoi cell finite element model
(AVCFEM) developed in Moorthy and Ghosh (2000) is coupled with the multi-level computational model.
In AVCFEM, two error measures are introduced to measure the quality of the solution. They are (i) the
traction reciprocity error, derived a-posteriori from solved traction discontinuity at the element boundary
and matrix-inclusion/void interface, and (ii) the error in kinematic relationships that is equated to an error
in the strain energy, in each of the element constituent phases. Displacement adaptations that minimize
traction discontinuity, are implemented to approach ‘optimal’ directions for displacement fields on the
boundary/interface. These directions optimize the virtual work due to traction discontinuity and are ob-
tained as components of the traction discontinuity in directions, orthogonal to the original displacement
field. It is achieved through ki-adaptation by adding displacement degrees of freedom in the x- or y-
directions on the boundary/interface. This is followed by polynomial or spectral p-enrichment of boundary
element interpolation functions [L]. The error in kinematic relations may be minimized by enhancing the
stress functions by polynomial enrichment or “""p-adaptation in the matrix and inclusion phases. Since the
enrichments are carried out simultaneously for all elements, the adaptation has elements of minimizing
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Fig. 34. A composite cross-section with n periodic layers of circular fibers, (b) a representative volume element for the effective medium
theory calculations.
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both local and pollution errors in the microstructure. Numerical analyses of several microstructures with
different distributions, sizes and shapes of heterogeneities have shown a superior convergence rate with
these adaptations.

The adaptive VCFEM of Moorthy and Ghosh (2000) is incorporated to reduce error in microstructural
simulations, especially in level-2 elements. To illustrate the effect of microscale adaptation, a simplified form
of the problem posed above, with one row of four fibers is considered. The mesh consists of 4 Voronoi cell
elements as shown in Fig. 35(a). The matrix stresses in the hybrid formulation are constructed from an
Airy’s stress function consisting of a 12 term fourth-order polynomial expansion and a 36 term reciprocal
function (Moorthy and Ghosh, 1996, 2000). The inclusion stresses are constructed using a 25 term, sixth-
order polynomial function. Displacement fields corresponding to Eq. (22) are constructed with linear shape
functions for element boundaries and quadratic shape functions for curved interface elements. The se-
quence of adaptations consists of two cycles of 4 — followed by a cycle of p-adaptation of displacement
degrees of freedom, followed by a cycle of “p-adaptation of the stress functions. The adapted mesh,
showing added displacement degrees of freedom, is illustrated in Fig. 35(a). The pre-adaptation nodes are
marked with a e, the x direction nodal adaptations are marked with a (0 while those in the y direction are
shown with A. The convergence of the VCFEM solutions is shown in Fig. 35(b), only for the average
traction reciprocity error or (ATRE) as a function of the total degrees of freedom. The ATRE is calculated
as (Moorthy and Ghosh, 2000)

PO D DA (48)

ATRE = < ,
Ne + N,

where Ng, N, et and e’ correspond to the total number of segments and the traction reciprocity error on
the element boundary and interface elements, respectively. The degrees of freedom (DOF) correspond to
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Fig. 35. (a) A microstructural /—p-adapted VCFEM mesh showing locations of the initial and added nodes with x- and y-DOF; (b)
solution convergence rate in terms of average traction reciprocity error (ATRE) as functions of inverse of the DOF.



2378 S. Ghosh et al. | International Journal of Solids and Structures 38 (2001) 2335-2385

Table 6

Statistics of h—h-p-adaptation for the elastic composite materials with circular fibers
Adaptation Initial h-1 h-2 P
DOF 464 569 748 807
ATRE 0.03592 0.011933 0.003726 0.002417

the sum of the total number of nodal degrees of freedom and the number of f stress parameters, i.e.
DOF =2 % Npodes + Np. Table 6 and Fig. 35(b) provide numerical details of ATRE with added degrees of
freedom due to each adaptation, on the boundary and interface only. Discrete points in the figure corre-
spond to the different stages of adaptation. The first two drops are for the two consecutive cycles of
h-adaptation and the third for p-adaptation. The traction reciprocity error reduces rather drastically in the
h-adaptation cycles, i.e. a 90% change in ATRE is obtained with a 61% increase in DOF. With the sub-
sequent p-adaptation, and additional 4% change in ATRE is obtained with a further 13% increase in DOF.
Since very little ATRE reduction is gained beyond two cycles of boundary s-adaptations, only these are
employed for the multi-scale simulations of this section.

A comparison study is made with the solutions in Pagano and Rybicki (1974) (the same results are also
generated by the commercial code ANSYS). The ANSYS mesh, for which convergence is achieved has 4230
QUADA4 elements and 4352 nodes. The microscopic in-plane stress o,, plots along horizontal sections y = 5
are compared for the unadapted VCFEM, adapted VCFEM and the ANSYS model in Fig. 36. It should be
noted that the transverse stress g,, is approximately two orders lower compared to the leading order stress
a.. and hence convergence is harder to achieve. Results of the adapted VCFEM results agree very well with
those of the converged ANSYS model. This is therefore a strong attestation of the accuracy of the adaptive
VCFEM solutions. The figure also shows the singular nature of the solution in the free edge region when
effective modulus theory by homogenization is used. Since this is physically unattainable, detailed mi-
cromechanics solutions are needed in this region.

40000.0
o——o Effective modulus
= Pagano & Rybicki
+ - -+ Without adaptation
& » h-p adaptation
20000.0

O, (psi)

7200000, 5 1.0 2.0 3.0 4.0

x/h

Fig. 36. g,, distribution at Section A-A (y=/) for the composite section with one row of fiber.
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11.2. Multi-level simulations

To test convergence of the overall model qualitatively, the composite problem with 40 (n = 40) rows of
6400 fibers is simulated by the multi-level code. The level-0/1 A-adaptation criterion is based on a traction
jump criterion across adjacent element boundaries, stated as

SE U+ (TP ey
NE [, doY ’

Refine element if E; > Cl * E,, where E,, = (49)
where NE is the total number of level-0/1 elements. This criterion is intended for signaling and zooming in
on regions high stress gradients. For level-0 to level-1, the transition is made based on element jump in the
significant stress o,,, in addition to the traction jump condition of Eq. (49), stated as

Joyllo[]dOY

Level-0 — Level-1 if E; > C2 % E,, or "E; > C2 x YE,,, where’E; = ,
Joy dOY

(50)
where C1, C2 are prescribed constants. Finally, the level-1 to level-2 transition is made from observations
made in the microstructural RVE’s of level-1 elements. It is based on the ratio of local energy density (at
each integration point of VC element) to the average energy density for the entire RVE (aggregate of VC
elements). The procedure followed for determining this is:

e Solve the RVE problems with periodicity boundary conditions and four sets of applied macroscopic
strains, viz. (i) e =1, e, =0, e, =0, e.. =0, (ii) e, =0, e, =1, e, =0, e. =0, (i) e, =0,
ey=0,e,=1 e.=0and (iv) e, =0, ¢, =0, ¢, =0, e.. = 1.

e For all cases (i-iv) evaluate the energy densities at integration point of the matrix and inclusion phases
as ymat/ind — S;.qka,‘/ '"Cla,-jak,, where S, is the compliance tensor.

e Evaluate the energy density concentration factors:

Maximum U™t (= ymat) Maximum U™ (= yind)

Rmat — max and Rincl —_ i max .
RVE Averaged Umat (= Umat) o RVE Averaged Und (= Uind)

aver aver

e In the multi-level problem with actual strain components, the transition is made according to

Level—l N Level-2 if actual Urr:;: > Rmat* actual Umat or actual U;:;l{ > Rmcl* actual Umcl (51)

aver aver’

at more than 1% of all integration points.

The initial mesh consists of 200 level-0 QUAD4 elements. To examine the dependence of results on
adaptation parameters, two sets of parameters viz. (C1 = 1.5,C2 =2) and (C1 = 1.25,C2 = 1.5) are ex-
perimented with. Fig. 37(a) and (b) show the h-adapted level-O/level-1/level-2 meshes with the different
adaptation parameters. The first set leads to 391 level-0 elements, 0 level-1 elements, six transition elements
and four level-2 elements, while the second set has 475 level-0 elements, four level-1 elements, nine tran-
sition elements and six level-2 elements. The microstructural RVE or unit cell is assumed to be of dimension
I = h/80 and the level-2 elements are assumed to contain a single unit cell. The same problem is also solved
using the commercial code ANSYS with a mesh of 30000 elements, for which a 3 x 3 array of fibers near
the free-edge and laminate interface are modeled explicitly (see Fig. 37(c)). In Fig. 38(a) the macroscopic
response of level-0 elements, with homogenized effective moduli, is plotted. The figure shows the effect of
mesh dependence in the solutions near the free-edge. With increasing cycles of adaptations the artificial
stress singularity moves towards the free edge and gains intensity. In Fig. 38(b) the microscopic level-2
stresses are plotted in the vicinity of the free edge (indicated as L2 in Fig. 38(a)). It is clearly seen that are
artificial singularity of homogenized solutions no longer exist and there is no mesh dependence near the free
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Fig. 37. (a,b) H-adaptive multi-level mesh showing level-0, level-1 and level-2 for two different parameters in transition criteria, and (c)
a corresponding ANSY'S mesh with detailed microstructure modeled near the free edge.
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Fig. 38. Convergence of stress g,, at Section A—A (y = h): (a) macroscopic stress plots using the homogenized moduli and level-0
elements, (b) microscopic level-2 stress plots near the critical free-edge region.

edge. The two multi-level meshes of Fig. 38(a) and (b) and the ANSYS model all produce similar results.
Thus, through this example, the convergence characteristics of the multi-level model is qualitatively verified

and confidence is gained about its application.
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12. Discussion and conclusion

Adaptivity in the computational modules for multiple scale problems entails minimizing two types of
errors, viz. the discretization error and the modeling error. In this paper, an adaptive multi-level method is
proposed to primarily focus on reducing the modeling error and predicting the evolution of stresses, strains
and damage at the structural and microstructural scales. The microstructural analysis is conducted with the
VCFEM for elastic—plastic constituents with particle cracking. VCFEM allows for continuous change in
element topology due to progressive damage with high accuracy as shown in Moorthy and Ghosh (2000)
and Ghosh and Moorthy (1998). The efficiency of the method, due to embedding micromechanics in FEM
formulation, makes modeling of large microstructural regions relatively easy. A conventional displacement
based elastic—plastic FEM code is developed for macroscopic analysis. Adaptive mesh refinement and level
transition strategies are developed to create a hierarchy of computational subdomains with varying reso-
lutions. This differentiates between non-critical and critical regions and helps in increasing the efficiency of
computations by preferential ‘zoom in’.

Three levels of hierarchy, viz. level-0, level-1 and level-2, evolve in the multi-scale model with progressive
deformation. A piecewise continuous elastic—plastic constitutive law is developed for level-0 simulations.
The specialty of this model is that since it is developed from rigorous micromechanical simulations with
precise material morphology, it is sensitive to variations in the microstructural distribution. The constit-
utive relation leads to very high efficiency in simulations when compared with two-scale analysis by ho-
mogenization (e.g. Guedes and Kikuchi, 1991).

Level-0 simulations are accompanied by mesh-refinement using A-adaptation techniques, to reduce
discretization error in the computational model and zoom in on regions of evolving localization due to
microscopic non-homogeneity. The criteria for s-adaptation are based on gradients or jumps in plastic
work or stresses. While these error criteria are effective in equi-distributing discretization errors where
solutions are relatively regular, they are also helpful in identifying regions of localization or singularity due
to steep gradients in the solution variables. It should however be mentioned that the proposed refinement
schemes and error criteria are by no means optimal. For example, it has been shown in Guo and Babuska
(1986) and Rank and Babuska (1987) the h—p-adaptation, which combines local mesh refinement with
increase of the polynomial order of interpolants, enjoy exponential rate of convergence and excellent ac-
curacy especially for problems with singularity. Additionally, it has been demonstrated in Oden and Feng
(1996) and Babuska et al. (1994), that local error estimation techniques are incapable of detecting pollution
error particularly when singularities are present. A robust mesh adaptation procedure for reducing errors
should therefore incorporate pollution error reduction criteria, as well as s—p-adaptation. Much of the
ongoing and future efforts by the authors are focussed on introducing these techniques. Since the focus of
this paper is more on the modeling errors, these implementations are deferred to future publications.

When imminent damage and localization are sensed by the code, the level-0 elements automatically
switch to level-1 elements, which use computations both at the macroscopic and microscopic scales. The
criteria for signaling such transition are non-unique and a number of them are considered in this study.
Among those that yielded effective results are (i) when the homogenized constitutive relation has reached its
limit; (ii) when the maximum macroscopic principal stress or hydrostatic stress exceeds a certain fraction of
the microscopic fracture stress or (iii) when the macroscopic effective plastic strain or the dilatation exceeds
certain pre-determined values. With the rise in local gradients of macroscopic variables or with micro-
structural damage, the pre-assumed representative volume element in the microstructure are no longer
effective and a shift to complete microscopic simulations is necessary. Extended portions of the micro-
structure are directly modeled by VCFEM in these level-2 elements. An adaptive VCFE model (AVCFEM)
is used to study convergence of the microstructural analysis model. In AVCFEM, traction reciprocity error
and error in kinematic relationships are optimized through boundary/interface enrichment in the form of
additional displacement degrees of freedom and interpolation orders, as well as through stress function
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enhancement. In Moorthy and Ghosh (2000), excellent convergence rate of AVCFEM has been established
for elastic and elasto—plastic microstructural analysis. For the problem considered in this paper, two cycles
of boundary h-adaptation is found to achieve desirable results in the level-2 elements.

Several numerical examples are conducted with the multi-level model to examine the effect of various
microstructural morphologies on the multi-scale response of composite and porous structural components.
Specifically scale effects, effects of microstructural distribution and shapes and structural geometry, on the
mechanical and damage response are investigated. In conclusions, the multi-level model has addressed a
number of difficult issues in solving multi-scale problems. However, a number of avenues for further model
enhancements remain. For example, the Newton—Raphson iteration scheme used for non-linear problems
struggle for convergence, as more and more level-2 elements with damage emerge. The migration of
boundaries between different levels within each iteration loop has an adverse effect on convergence as well.
Also for the level-1 elements, an iterative loop is necessary for convergence of steps (a), (b) and (c) in
Section 6. In addition, the issues of adaptivity mentioned above remain. These issues are currently being
dealt with for making this an effective tool in the prediction of structural failure.
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